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a b s t r a c t

This paper presents several new formulations for the Discrete Ordered Median Problem (DOMP) based
on its similarity with some scheduling problems. Some of the new formulations present a considerably
smaller number of constraints to define the problem with respect to some previously known formula-
tions. Furthermore, the lower bounds provided by their linear relaxations improve the ones obtained
with previous formulations in the literature even when strengthening is not applied. We also present a
polyhedral study of the assignment polytope of our tightest formulation showing its proximity to the
convex hull of the integer solutions of the problem. Several resolution approaches, among which we
mention a branch and cut algorithm, are compared. Extensive computational results on two families of
instances, namely randomly generated and from Beasley's OR-library, show the power of our methods for
solving DOMP.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Recognizing the need for more flexible logistic models, Nickel
[13] proposed the Discrete Ordered Median Location Problem
(DOMP) which could be used to model different locations pro-
blems, as the p-median or the p-center. It is a flexible formulation
based on applying an ordered weighted averaging operator to the
costs as they appear in the solution and taking them into account
with a suitable n-vector λ.

Given a vector of weights, the ordered weighted average of n
real numbers is obtained by first ranking those numbers by non-
decreasing order and then computing the scalar product of the
ranked allocation cost vector and the weight vector, see e.g. Nickel
and Puerto [14].

Consider a set of clients and a set of candidate locations where
some facility can be established. Further we are given the costs for
allocating clients to facilities. DOMP consists in choosing p facility
locations and assigning each client to a facility with smallest al-
location cost in order to minimize a special objective function, the
so-called ordered median function. Given a vector of weights, this
function consists in an ordered weighted average of the allocation
costs, namely it sorts these costs in non-decreasing sequence and
atemáticas, Universidad de

ponce@us.es (D. Ponce),
then it performs the scalar product of this so obtained sorted cost
vector and the given vector of weights. This objective function has
been widely applied in the field of location analysis and distribu-
tion models [10,9,17,18]. In addition, it has the potential to yield
new models for order statistics embedded within mathematical
programming formulations; thus enlarging the applications of
optimization tools to the resolution of statistical problems in data
analysis.

DOMP is known to be − complete, see Nickel and Puerto
[14].

The first formulation of DOMP, proposed by Nickel [13], con-
sists in an integer nonlinear problem. Then, Boland et al. [3] pro-
pose several linearizations of Nickel's model.

Instances with up to 30 clients could be solved to optimality by
Boland et al. [3]. Further, if clients and facility locations coincide
and if the allocation cost of a client to itself is equal to zero (the so-
called free self-service), then instances with up to 100 clients
could be solved by Marín et al. [10,11]. We observe that in all
previously considered formulations the gaps with respect to the
linear programming relaxations of those models are rather large,
as mentioned in all those papers.

In this paper, we propose new formulations for DOMP and we
develop a theoretical comparison of the lower bounds obtained
from their LP-relaxations and show that our new formulations are
rather tight. Our theoretical results also attempt to shed some light
on the polyhedral structure of the new formulation based on
scheduling constraints. We conclude with extensive computational
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experiments to compare the respective efficiency of these
formulations.

For the ease of presentation, we assume in some cases in this
paper that the client and facility location sets coincide. However, it
is important to remark that all the models and results presented
extend to the general case in which client and facility location may
differ since we do not impose that the cost of allocating a client to
itself is equal to zero.

The remaining paper is organized as follows: in Section 2 we
define the problem and some previous formulations. Next, we
present new formulations for the DOMP. In addition, we analyze
the relationship between the polytopes of the previously known
formulations of this problem and we identify facets for the related
assignment polytope in Section 3. Finally, some computational
experiments are reported in Section 4.
2. The problem and some formulations

Let I be a set of n points which at the same time represent
clients and potential facility locations.

The cost for serving client i's demand from facility j is denoted
by Cij and a facility can serve as many clients as needed, i.e. fa-
cilities are uncapacitated.

The Discrete Ordered Median Problem (DOMP) consists in

(i) determining a subset J of p facility locations, ⊂J I , to open and
(ii) assigning clients to closest open facilities in order to minimize

the ordered median objective function defined as follows.

Given the set J of p open facilities, let ci(J) represents the cost for
allocating client i to some facility in J such that ( ) = ∈c J Cmini j J ij.

Now let us rank the costs ci(J), ∈i I by non-decreasing order of
their values. These ordered costs are denoted by ( )≤c Jk and verify

( ) ≤ ⋯ ≤ ( )≤ ≤c J c J .n1

Then, given a vector λ λ= ( ) =
k

k
n

1 satisfying λ ≥ = …k n0, 1, ,k ,
the DOMP objective function, also called ordered median function,
is defined as

∑ λ ( )
( )=

≤c J .
1k

n
k k

1

Note that this objective function provides a very general para-
digm to encompass standard and new location models. For in-
stance, if λ λ= ⋯ = = 1n1 we obtain the median objective, if
λ λ λ λ= = ⋯ = = =− 0, 1n n1 2 1 we obtain the center objective, if
λ λ λ α λ= = ⋯ = = =− , 1n n1 2 1 we obtain a convex combination of
median and center objectives (centdian), etcetera.

We define the p-facility Discrete Ordered Median Problem as
determining the subset J, of p facilities to open in order to mini-
mize the ordered median function:

∑ λ ( )
( )⊂ | |= =

≤c Jmin .
DOMPJ I J p

k

n
k k

:
1

2.1. Three-index formulation

The formulation that we present below, denoted by (DOMP1),
was introduced by Boland et al. [3]. It uses three-index variables
xij

k such that =x 1ij
k , if client i is served by facility j and cost

( ) =c J Ci ij is the kth smallest in the ordered sequence ( )≤c J , =x 0ij
k

otherwise. Further, it also uses location variables yj such that yj¼1
if ∈j J and yj¼0 otherwise.
If =x 1ij
k , we say that allocation of client i to facility j is in po-

sition k, or that couple ij is in position k:

∑ ∑ ∑ λ( )
( )= = =

DOMP C xmin
2i

n

j

n

k

n
k

ij ij
k

1
1 1 1

∑ ∑ = = …
( )= =

x i ns. t. 1 1, ,
3j

n

k

n

ij
k

1 1

∑ ∑ = = …
( )= =

x k n1 1, ,
4i

n

j

n

ij
k

1 1

∑ ≤ = …
( )=

x y i j n, 1, ,
5k

n

ij
k

j
1

∑ =
( )=

y p
6j

n

j
1

∑ ∑ ∑ ∑≤ = …
( )= =

−

= =

C x C x k n2, ,
7i

n

j

n

ij ij
k

i

n

j

n

ij ij
k

1 1

1

1 1

∈ { } = … ( )x i j k n0, 1 , , 1, , 8ij
k

∈ { } = … ( )y j n0, 1 1, , . 9j

By means of (3) we ensure that each location is served by ex-
actly one facility. In the same way, in each position there must be
exactly one allocation (4). We know that a client can be allocated
to a facility only if this facility is open, i.e. ≤x yij

k
j for all i j k, , .

Furthermore, each allocation of client to facility can be placed in at
most one position. Hence, ≤x yij

k
j can be strengthened yielding

constraint (5). The equality constraint (6) implies that there are
exactly p open facilities. Inequality (7) imposes that the allocation
cost in position −k 1 cannot be greater than the one in position k.
Finally, the variables are binary, see (8) and (9).

2.2. Two-index formulation

This formulation (DOMP2) was described for the first time in
Puerto [16] and Marín et al. [10] and later applied to a hub pro-
blem in Puerto et al. [17]. It considers a vector that contains all the
different values in the cost matrix C, augmented with zero if it is
not present in matrix C, as it is explained below.

Let C be a matrix and assume that it contains G different values
such that >c 0ij . Then, the ( + )−G 1 dimensional vector ( )c . is
constructed as follows:

= < < < ⋯ < < = { = … }( ) ( ) ( ) ( − ) ( )c c c c c C i j n0 max : , 1, , .G G ij0 1 2 1

To formulate the problem we need to define the following
binary variables. Variable =x 1ij if client i is served by facility j and
0 otherwise, variable yj¼1 if ∈j J and 0 otherwise and variable

=u 1kh if the kth smallest allocation cost is greater than ( − )c h 1 and
0 otherwise. Further, we set =u 1k0 and = = …+u k n0, 1, ,k G, 1 .

The problem to solve is

∑ ∑ λ( ) ( − )
( )= =

( ) ( − )DOMP c c umin
10k

n

h

G
k

h h kh2
1 1

1

∑ =
( )=

y ps. t.
11j

n

j
1
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∑ = = …
( )=

x i n1 1, ,
12j

n

ij
1

≤ = … ( )x y i j n, 1, , 13ij j

≥ = … = … − ( )+u u k n h G1, , , 1, , 1 14kh k h, 1

≥ = … − = … ( )+u u k n h G1, , 1, 1, , 15k h kh1,

∑ ∑ ∑= = …

( )
= =

>
=

( − )

x u h G1, ,

16
i

n

j
C c

n

ij
k

n

kh
1 1: 1

ij h 1

∈ { } = … ( )x i j n0, 1 , 1, , 17ij

∈ { } = … = … ( )u k n h G0, 1 1, , , 1, , 18kh

∈ { } = … ( )y j n0, 1 1, , . 19j

The objective function (10) is equivalent to (1). Assume that the
kth smallest allocation cost is equal to ( )c hk

for some hk; then by the
definition of the variable ukhk

∑ ∑( − ) = ( − ) = − =
=

( ) ( − )
=

( ) ( − ) ( ) ( ) ( )c c u c c c c c
h

G

h h kh
h

h

h h h h
1

1
1
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k

k k

provided that =u 1khk
and =+u 0k h, 1k

. Finally,
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The equality constraint (11) ensures that there are exactly p
facilities to be located. Constraints (12) and (13) state that each
client is served by one open facility. Equality (16) ensures a good
definition of the variable ukh and it relates the sorting (ukh) and
design variables (xij). We need to impose some sorting constraints
on the ukh variables (15). Constraints (14) are redundant but they
are included because, according to Marín et al. [10], it significantly
strengthen the formulation. Furthermore, all variables are binary
(17)–(19).

Note that others two index formulations has been proposed in
Marín et al. [10,11]. However, they are only valid if

= ∀ = …c i n0 1, ,ii (free self-service).
2.3. A new formulation for DOMP

There are several formulations for DOMP but they all have large
integrality gap, as observed previously in the literature see Boland
et al. [3], Marín et al. [10,11] and Puerto [16]. The main motivation
for addressing a new formulation for the DOMP relies on the at-
tempt to reduce this gap.

First, we introduce the following notation:
Fig. 1. An order constraint for the case, =n 4.
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The above relationship induces a strict total order among the
couples ij. Its use avoids to consider multiple, symmetric feasible
solutions coming from the structure of the matrix C.

2.3.1. New three index formulation
Our new formulation uses the same variables and constraints

as in the three-index formulation, DOMP1, except that (7) are re-
placed by (21) that are called order constraints.

The resulting formulation is denoted DOMP3:

∑ ∑ ∑

∑ ∑ ∑ ∑

λ( )

( ) ( ) ( ) ( ) ( ) ( )

+ = … = …

( )

= = =

^= ^=
^^⪰

^^
−

^= ^=
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^^

DOMP C x

x x i j n k n

min
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, 1, , , 2, , .
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n
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n
k

n

ij

n
k

3
1 1 1

I 1 J 1:

I J

I J
1

I 1 J 1:

I J

I J

The rationale behind constraints (21) is illustrated by the following
example.

Example 1. Consider the following matrix.

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
=C

0 2 7 4
1 0 5 5
3 6 0 2
9 4 1 0

The order of couples ij by means of the above preference order is

≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺ ≺11 22 33 44 21 43 12 34 31 14 42 23 24 32 13 41.

The columns of Fig. 1 represent the n2 possible assignments of
clients to facilities whereas its rows represent the n positions in
DOMP objective function. Each point (bullet or circle) thus re-
presents a variable xij

k and the bullets correspond to variables
which cannot take value 1 simultaneously because, in any feasible
solution, the cost of couples assigned to consecutive positions
should be non-decreasing.

So, Fig. 1 corresponds to the following inequality:

∑ ∑ ∑ ∑+ ≤
= =

^^⪰

^^
= =

^^⪯

^^x x 1,
i

n

j

n

i

n

j

n

1 1:

I J 43

I J
2

1 1:

I J 43

I J
3

or equivalently

+ + + + + + + + + + +

+ + + + + ≤

x x x x x x x x x x x x

x x x x x 1.
11
3

22
3

33
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44
3

21
3

43
3

43
2

12
2

34
2

31
2

14
2

42
2

23
2

24
2

32
2

13
2

41
2

Note that the number of order constraints is ( )O n3 . Further they
can be seen as cliques of a conflict graph induced by the in-
compatibility among xij

k variables on three index formulations
[12,7].

In a similar way, we can choose several allocations which are
sorted and identify a new type of constraints. Let s be a positive
integer with ≤ −s n 1 and let ( ) ( ) … ( )i j i j i j, , , s s1 1 2 2 be s couples of



Fig. 2. A staircase constraint for the case, =n 5.
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clients and facilities such that ⪯ + +i j i jr r r r1 1 for all = … −r s1, , 1.
Then the following family of inequalities, called staircase inequal-
ities is valid for = …k s n, , :

∑ ∑ ∑ ∑ ∑ ∑ ∑+ + ≤

( )

= =
⪯

=

−

=

⪯

−

= =
≽

−

=
≽

+ +

x x x 1.
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1 1: 1

1
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ij irjr

r r
s s11

1:

1 1

Fig. 2 provides an example of staircase inequality when n¼5.
Notice that there exists an exponential number of additional

staircase constraints. But the question is whether these new con-
straints actually strengthen our formulation. The answer is pro-
vided by the following result that states that all of them are im-
plied by those with a single step, i.e. the order constraints.

Proposition 1. Staircase inequalities (22) with ⪯ + +i j i jr r r r1 1 can be
obtained as an affine combination of (21) and (4).

Proof. Let s be a positive integer such that ≤ −s n 1, then by (21)
we obtain that also the following s inequalities hold:

∑ ∑ ∑ ∑+ ≤ = …

( )
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⪯

−( − )
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≽

−x x r s1 1, , .
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Now, since ⪯ + +i j i jr r r r1 1 using (4), we obtain the following −s 1
equations:

∑ ∑ = = … −
( )= =

−x r s1 1, , 1.
24i
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Adding all inequalities (23) we obtain a new inequality:
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After rearranging, we get
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Next, we conveniently split some terms of the above inequality to
get:
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On the other hand, using equality (24) we can write
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Adding the above equations for all = … −r s1, , 1, we obtain
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Finally, using the above equation in (25) results in
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which is a staircase inequality. □

2.3.2. A two index formulation with scheduling constraints
Formulation DOMP3 is rather efficient and tight whenever there

are few ties in the structure of the allocation costs. This is for in-
stance the case of problems with assignment costs based on flat
costs (for instance randomly generated). However, if the number
of ties in the allocation costs is large the number of binary vari-
ables and constraints is relatively large, as compared with similar
numbers in formulation DOMP2. In order to exploit this advantage
without losing the usage of scheduling constraints, that relate the
formulation with the stable set problem, we will develop in the
following another formulation.

The new formulation, called DOMP3C, is an extension of DOMP3
using the rationale of DOMP2. Moreover, it provides a compact
form for representing ties in the allocation costs.

Consider a new set of binary variables, vkh such that =v 1kh if
the kth smallest allocation cost is ( )c h and 0 otherwise. Next,
DOMP3C is a new valid formulation for DOMP:
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x v h G0, ,

28
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′v v
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1
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∈ { }
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= … ( )
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i j k n

h G
, , 0, 1

, , 1, ,

0, , . 30
ij j kh

Clearly, the objective function (26) accounts for the ordered
weighted sum of the allocation costs. Constraints (28) state that
the number of allocations that are attained at the value ( )c h re-
gardless of the level k that they occupy (vkh variables) must be
equal to the number of allocations of clients i to facility j with ij
such that Cij is equal to ( )c h (see Fig. 3). Finally, constraints (29) are
scheduling constraints based on costs values rather than in cou-
ples ij of client-facility (see Fig. 4).



 

Fig. 4. The rationale of constraints (29).

Fig. 3. The rationale of constraints (28).
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2.4. An aggregated formulation

Here, we introduce another formulation (DOMP4) based on the
aggregation of order constraints from DOMP3 corresponding to the
same position. It therefore requires a smaller number of con-
straints:

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

∑ ∑ ∑
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( ) ( ) ( ) ( ) ( ) ( )
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′ ′ ⪯

′ ′
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′ ′ ≽
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−

DOMP C x

x x n k n

min
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n
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i

n

j
i j ij

n

i j
k

4
1 1 1

1 1: 1 1:

1 2

The new constraints (31), that we call weak order constraints,
ensure that if a couple ij occupies the kth position then in ( − )k 1 th
position there must be a more preferred allocation. It is due to the
coefficients of each variable in the inequality. In each constraint
there are two different positions, k and −k 1, so that, by (4), two
variables must take value one and all the others will be equal to
zero. If we do not take into account the variables taking the value
zero and we assume that the variables with value one for positions
k and −k 1 are in position s and t, respectively, we have the fol-
lowing:

( − ( − )) + ≤−n s x tx n1 ,i j
k

i j
k2 1 2

s s t t

which is valid if and only if <t s.
Aggregating the scheduling constraints in DOMP3C for the dif-

ferent values of the costs, namely in h¼1,…,G, results in a new
valid model. This model is the aggregated version of DOMP3C that
we denote as DOMP4C:
⎛
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Using the rationale of (7), since there is only one binary vari-
able vkh in each position k by (27), the following constraints are
valid inequalities for both formulations DOMP3C and DOMP4C:

∑ ∑− ≤ = …
( )=

( ) −
=

( )c v c v k n0 2, , .
33h

G

h k h
h

G

h kh
1

1
1

In fact, these constraints can also define another valid for-
mulation for DOMP replacing (32) by (33) in the above formula-
tion. In our experiments, we will not use this last possibility and
instead, we shall use (33) as valid inequalities to strengthen
DOMP3C and DOMP4C.
3. Theoretical results

In this section, we provide a theoretical comparison of the four
formulations presented in Section 2 and some polyhedral results
regarding our formulation DOMP3. Our goal is to state the formal
relationships between the lower bounds provided by the linear
relaxations of the considered formulations. In addition, we also
give some families of tight valid inequalities which are proven to
be facets of the polytope defined by assignment constraints (see
Section 3.2.)

3.1. Comparison of formulations

We denote by (·)zl the value of the objective function of DOMPl
evaluated at the point (·), by Pl the polytope defining the feasible
set of the linear relaxation of formulation DOMPl, and by PIl the
convex hull of the integer solutions within that polytope.

Consider the following mapping:

[ ] × [ ] ⟶ [ ] × [ ] × [ ]

( ) ⟼ ( )

f

x y x y u

: 0, 1 0, 1 0, 1 0, 1 0, 1

, , ,

n n n n nG

ij
k

j ij j kh

3 2

defined by the following two equations:
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x x i j n, 1, ,
34
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and
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For h¼1,…,G, let us define ( ) = { − > }+k h k u umin : 0kh k h, 1 being
=+u uk G kG, 1 . We assume that if − =+u u 0kh k h, 1 for all k, ( )=+∞k h .

Next, for each h¼1,…,G let ( )x ij h
be the non-null variable >x 0ij

such that the couple ( )ij is the most preferred, in the pairwise strict
order introduced in (20), among those satisfying = ( )C cij h .

Observe that this couple can be formally defined as the mini-
mal in the order induced by the relation ≺among those with

= ( )C cij h , namely:

( ) = { > = }
(≺)

( )ij ij x C cmin : 0 and .h ij ij h

Based on the above couples, for any feasible solution
( ) ∈x y u P, ,ij j kh 2 we construct, sequentially, a feasible solution of P1.

Indeed, for each = …h G1, , and = ( )C cij h , we construct sequen-
tially in the strict order given by (20) and from k¼1 until k¼n:
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Now, using the above definition we introduce the mapping g:

[ ] × [ ] × [ ] ⟶ [ ] × [ ]

( ) ⟼ ( )

g

x y u x y

: 0, 1 0, 1 0, 1 0, 1 0, 1

, , ,

n n nG n n

ij j kh ij
k

j

2 3

where xij
k is given by (36).

These two mappings f and g relate the space of feasible solu-
tions to DOMP1, DOMP3 and DOMP4 with the space of feasible
solutions to DOMP2 and conversely.

Observation 1.

� For any points ( ) ∈x y P,ij
k

j l and ( )f x y,ij
k

j , ( ) = ( ( ))z x y z f x y, ,l ij
k

j ij
k

j2 for
=l 1, 3, 4.

� For any points ( ) ∈x y u P, ,ij j kh 2 and ( )g x y u, ,ij j kh ,
( ) = ( ( ))z x y u z g x y u, , , ,ij j kh l ij j kh2 for =l 1, 3, 4.

We begin by analyzing the strength of the lower bounds pro-
vided by the continuous relaxation of formulations DOMPl for

=l 1, 2, 3, 4.

Theorem 1. Let = ( )p x y u, ,ij j kh . If ∈p P2 then ( ) ∈g p P1.

Proof. Let ( ) ∈x y u P, ,ij j kh 2. By construction of (36), we have that
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kh k h1 1: , 1. Moreover, by (16), we get
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by the construction in (36) we obtain that = ∑ =x xij k
n
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1 . This ar-

gument proves that the point ( )x y,ij
k

j , provided by (36), also sa-

tisfies (34).
Next, since ( ) ∈x y u P, ,ij j kh 2, it satisfies (12), (13) and (11) and

using that = ∑ =x xij k
n

ij
k

1 it follows that ( )x y,ij
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j fulfills (3), (5) and (6),
respectively.

Further, note that
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i.e. the point ( )x y,ij
k

j satisfies (4).
Now we show that (15) and (35) imply (7). Replacing the

variables in (15) using (35) we obtain:
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Next, adding the above inequalities for all h yields
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Given that =( )c 00 , we get
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which is equivalent to
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Finally, since ( ) ∈x y u P, ,ij j kh 2 it satisfies ≤ ≤ ≤ ≤x u0 1, 0 1ij kh .

Hence, by (34) and (36) ≤ ≤x0 1.ij
k Furthermore ≤ ≤y0 1j is

satisfied. □

Next, we prove the relationship between the feasible regions of
formulations DOMP3 and DOMP2.

Theorem 2. ( ) ⊂f P P3 2.

Proof. Let ( ) ∈x y P,ij
k

j 3, by (3) and (34), (12) is satisfied and by
(5) and (34), (13) is satisfied.

We observe that ( )x y,ij
k

j satisfies



Table 2
x-values and y-values for a fractional feasible solution of Example 1 using
formulation DOMP2.

xij j¼1 j¼2 j¼3 j¼4

i¼1 1 0 0 0
i¼2 1 0 0 0
i¼3 0 0 1 0
i¼4 0 0 1 0
yj 1 0 1 0
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Then using (35) we obtain ≥ +u ukh k h, 1 which proves (14).
In order to verify (15), by (4) we know that

∑ ∑ ∑ ∑+ =
= =

<

+

= =
≥

+

( ) ( )

x x 1
i

n

j
C c

n

ij
k

i

n

j
C c

n

ij
k

1 1:

1

1 1:

1

ij h ij h
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and, using (35), constraint (15) is satisfied.
Eqs. (6) and (11) are the same.
It is clear that
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By (34), the LHS is

∑ ∑ ∑ ∑ ∑=
= =

>
= = =

>( − ) ( − )

x x ,
i

n

j
C c

n

k

n

ij
k

i

n

j
C c

n

ij
1 1: 1 1 1:

ij h ij h1 1

and by (35) the RHS is
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By replacing both, (16) is satisfied.
In addition, all the variables are greater than or equal to zero

and lower than or equal to one according with (34), (35), (3) and
(4), since
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As shown by Example 2 (Cont'd), the inclusion of ( )f P3 into P2 is
strict, i.e. there exists a point in P2 which cannot be obtained as the
image of a point from P3 by mapping f.
Table 1
u-values for a fractional feasible solution of Example 1 using formulation DOMP2.

ukh =( )c 00 =( )c 11 =( )c 22 =( )c 33

k¼1 1 1
2

0 0

k¼2 1 1
2

0 0

k¼3 1 1
2

0 0

k¼4 1 1
2

0 0
Example 2 (continues¼exa:cont). We consider matrix C of
Example 1. Further, n¼4 and p¼2. We choose the optimal solution
of the linear relaxation of DOMP2 with λ = ( )1, 1, 1, 3 and observe
that it is a fractional vertex of P2 (see Tables 1 and 2).

Now, we show that there is no point in P3 corresponding to that
fractional solution in P2. From = ∑ =x xij k

n
ij
k

1 we deduce that =x 0ij
k

for all i j k, , such that =x 0ij . Next, from the equation
= ∑ =

≥ ( )

u xkh i j
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, 1 we can conclude that point ( ) ∈x y P,ij
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Further, constraints (4) for k¼2,3 state that:
+ + + =x x x x 111

2
33
2
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43
2 and + + + =x x x x 111

3
33
3

21
3

43
3 , respectively.

Thus, combining these two equations with those above it results
that + =x x11

2
33
2 1

2
and + =x x11

3
33
3 1

2
.

On the other hand, the order constraints (21) for
= = =i j k2, 1, 2 and = = =i j k2, 1, 3 require that xij

k fulfills
+ + + + ≤x x x x x 111

2
33
2
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1

43
1 and + + + + ≤x x x x x 111
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2 , re-

spectively. Combining these inequalities with the results above
yields that = =x x 021

2
43
2 which contradicts the equation

+ =x x21
2

43
2 1

2
included in (37).

Our following result states the relationship between the fea-
sible regions of the formulations DOMP3 and DOMP1.

Theorem 3. ⊂P P3 1.

Proof. Using Theorems 1 and 2, it follows that

⊂ ( ) ⊂ ▫P g P P .3 2 1

Our next goal is to relate the polytope P3C of the linear re-
laxation of DOMP3C with the previously considered polytopes.

Consider the following linear transformation:

[ ] ⟶ [ ]
⟼

L
u v

: 0, 1 0, 1 ,nG nG

kh kh

defined by the following equations:

=v ukG kG

and
=( )c 44 =( )c 55 =( )c 66 =( )c 77 =( )c 98

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
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Consider as well the inverse −L 1
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Let us denote by zl
LP the optimal value of the LP-relaxation of

DOMPl for =l C C1, 2, 3, 4, 3 , 4 .

Theorem 4. The linear relaxation of formulation DOMP3C is equal to
the linear relaxation of formulation DOMP2 modulo the linear
transformation L, i.e. ( ) =L P P C2 3 and =z zLP

C
LP

2 3 .

Proof. First, we check that both objective functions are equivalent,
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Now, we show that the image ( ) =−L P PC
1

3 2. Then remarking that
the linear transformation has full rank, the proof will be
completed.

First, constraints (11), (12) and (13) are common to DOMP C3
and DOMP2.

Then, by definition, = = …u k n1, 1, ,k0 . So

∑ =
′=

′v 1.
h

G

kh
0

From (15),

∑ ∑≥
′=

+ ′
′=

′v v ,
h h

G

k h
h h

G

kh1,

which is equivalent to

∑ ∑− ≥
′=

−

+ ′
′=

′v v1 .
h

h

k h
h h

G

kh
0

1

1,

And this is constraint (29). Writing (16) for h and +h 1, we get

∑ ∑ ∑ ∑ ∑ ∑= =
= =

>
= = =

>
=

+

( − ) ( )

x u x uand ,
i

n

j
C c

n

ij
k

n

kh
i

n

j
C c

n

ij
k

n

k h
1 1: 1 1 1: 1

, 1

ij h ij h1

and subtracting the second from the first we obtain

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

∑

= − = −

=

= =
=

= =
+

= ′=
′

= ′= +
′

=

( )

x u u v v

v ,

i

n

j
C c

n

ij
k

n

kh
k

n

k h
k

n

h h

G

kh
k

n

h h

G

kh

k

n

kh

1 1: 1 1
, 1

1 1 1

1

ij h

which is equivalent to (28).
Finally, from (15) and (39) and the fact that ≤ ≤u0 1kh , we

obtain that ∈ [ ]v 0, 1kh . □
From the previous theorem one can easily obtain the
relationship between the polytopes of feasible solutions of for-
mulations DOMP3C and DOMP4C.

Corollary 1. ⊂P PC C3 4 .

We are now in position to present the overall relationship
among the LP-relaxation values of all the considered formulations.

Corollary 2. ≥ = ≥z z z zLP
C

LP LP LP
3 3 2 1 , ≥z zLP LP

3 4 and ≥z zC
LP

C
LP

3 4 .

Proof. This is an immediate consequence of Observation 1 and
Theorems 1–4. □

Observe that we have not proved a theoretical relationship
between P2 and P4, but, as we will see in Section 4, empirically, we
have observed that the solutions of the LP-relaxation of DOMP4
provide in most cases a better bound than that of DOMP2. However
cases exist where it is the contrary. Theoretically, the formulation
DOMP3 gives a better or equal bound than DOMP2 whose bound, as
one can see in Section 4, concurs experimentally with the objec-
tive value of the linear relaxation of DOMP1. Therefore, we know
that DOMP3 is the tightest formulation among the four presented
in this paper.

Using similar arguments as those developed in the proofs of
Theorems 1 and 2 we can formally state the validity of our for-
mulations DOMP3 and DOMP4.

Theorem 5.

1. If ( ) ∈x y u P, ,ij j kh
I
2 then ( ) ∈g x y u P, ,ij j kh

I
3. Conversely, for any

( ) ∈x y P,ij
k

j
I
3, ( ) ∈f x y P,ij

k
j

I
2.

2. If ( ) ∈x y u P, ,ij j kh
I
2 then ( ) ∈g x y u P, ,ij j kh

I
1. Conversely, for any

( ) ∈x y P,ij
k

j
I
1, ( ) ∈f x y P,ij

k
j

I
2.

3. =P PI I
3 4.

Proof. We prove Theorem 5 in three steps.

1. ( ) =g P P2
I

3
I

(a) ( ) ⊂g P P2
I

3
I

Let ( ) ∈x y u P, ,ij j kh
I
2 and consider its projection, ( )x y,ij

k
j defined

by (34), (35) and (36) onto P3. This point satisfies (3), (5),
(6) and (21).

In order to see that the point ( )x y,ij
k

j satisfies (4), by (35) we

have ∑ ∑ = ∈ { }= = x u 0, 1i
n

j
n

ij
k

k1 1 0 for all = …k n1, , and by (12)

it follows that ∑ ∑ == = x n.i
n

j
n

ij1 1 Then using (34) we obtain

( )∑ ∑ ∑ == = = x n.k
n

i
n

j
n

ij
k

1 1 1 Next, the only possibility for the

above sum to be equal to n is that ∑ ∑ == = x 1i
n

j
n

ij
k

1 1 for all

= …k n1, , , and (4) is satisfied.

It remains to prove that ( )x y,ij
k

j is integer. It is clear that yj is

integer because it constitutes the same vector as in P2. Finally,
the xij

k variables are also binary due to the fact that they are
the product of binary variables, see (36).

(b) ⊂ ( )P g P3
I

2
I

To prove the converse, we observe by that every integer so-
lution in PI3 provides a projected integer solution and we have
seen in Theorem 2 that this point satisfies the inequalities
defining P2.

2. = ( )P g P1
I

2
I

(a) ( ) ⊂g P P2
I

1
I

Every integer solution in P2 is projected into an integer so-
lution and, from Theorem 1 this point satisfies the inequal-
ities defining P1.

(b) ⊂ ( )P g PI
2
I

1
Conversely, let ( ) ∈x y P,ij

k
j

I
1 and its projection ( )x y u, ,ij j kh by
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means of (34) and (35).
It is easy to see that (3), (5) and (6) are equivalent to (12), (13)
and (11), respectively.
Since all the variables are positive the point ( )x y,ij

k
j satisfies

∑ ∑≥
≥ ≥( ) ( + )

x x ,
C c

n

ij
k

C c

n

ij
k

ij h ij h 1

and (14) holds.
Furthermore, (16) holds by the change of variable defined in
(34) and (35).
In inequalities (7), we can order the cost without loss of
generality. Next by (4), there will be a unique variable with
value one in each position. Therefore we obtain the following
constraint for each different cost:

∑ ∑≥ = … = … −
≥

+

≥( ) ( )

x x h G k n1, , , 1, , 1
C c

n

ij
k

C c

n

ij
k1

ij h ij h

and point ( )x y u, ,ij j kh satisfies (15). Furthermore, this point is
integer.

3. =P P3
I

4
I

(a) ⊂P P4
I

3
I

Let ( ) ∈x y P,ij
k

j
I
4. In particular, the weak order constraint is

satisfied. By (4) we have

∑ ∑ ≤
′=

′ ′
′ =
⪯

′ ′x 1
i

i j

n

j
ij

n

i j
k

1
:

1

and

∑ ∑ ≤
′=

′ ′
′ =
≽

′ ′
−x 1,

i
i j

n

j
ij

n

i j
k

1
:

1

1

where both inequalities are a sum of binary variables. So there
are two possibilities:

∑ ∑ ∑ ∑+ ≤

( )
′= ′ =

′ ′ ⪯

′ ′
′= ′ =

′ ′ ≽

′ ′
−x x 1, or

40
i

n

j
i j ij

n

i j
k

i

n

j
i j ij

n

i j
k

1 1: 1 1:

1

∑ ∑ ∑ ∑+ =

( )
′= ′ =

′ ′ ⪯

′ ′
′= ′ =

′ ′ ≽

′ ′
−x x 2.

41
i

n

j
i j ij

n

i j
k

i

n

j
i j ij

n

i j
k

1 1: 1 1:

1

In case (41), there will be two different costs ^̂ ≺˜˜i jI J (note that
^̂ = ˜˜i jI J is not possible by (6)) such that =^^x 1k

I J
and =˜˜

−x 1
i j
k 1 .

This fact contradicts the ordering relationship. Thus, the only
possibility is that case (40) holds and, in consequence,
constraint (21) is satisfied.
(b) ⊂P P3

I
4
I

Let ( )x y,ij
k

j be an integer point satisfying PI3. It is clear that this
integer point also belongs to P I

4. □

Corollary 3. = = = ( )P P P g PI I I I
1 3 4 2 .

3.2. On the polytope defined by the assignment constraints

The goal of this section is to provide some results about the
facial structure of the polytope corresponding to the assignment
constraints of formulation DOMP3. We restrict ourselves to the
analysis of formulation DOMP3 since, according to Corollary 2, it
gives the tightest formulation to DOMP among those studied in
this paper. Similar studies of (simpler) polytopes related to loca-
tion problems have been carried out by e.g. Arbib et al. [1],
Guignard [8], Cornuéjols and Thizy [4], de Farias Jr. [5] and
Vasilyev et al. [19].
For a given set J of p open facilities, we define the assignment

polytope ( )P J3 of DOMP3 as follows:

∑ ∑ ≤ = …
( )∈ =

x i n1 1, ,
42j J k

n

ij
k

1

∑ ∑ ≤ = …
( )= ∈

x k n1 1, ,
43i

n

j J
ij
k

1

∑ ≤ = … ∈
( )=

x i n j J1 1, , ,
44k

n

ij
k

1

∑ ∑+ ≤ = … ∈ = …
( )′ ′ ≽

′ ′
−

′ ′ ⪯
′ ′x x i n j J k n1 1, , , , 2, ,

45i j ij
i j
k

i j ij
i j
k1

≥ = … ∈ ( )x i k n j J0 , 1, , , . 46ij
k

We show which of the constraints that describe this polytope
are facet inducing. Clearly, this contributes to the good quality of
the LP-relaxation of DOMP3, since this assignment polytope re-
presents the underlying structure of the problem once the set of
open facilities is determined.

We summarize the polyhedral properties of the convex hull of

( ) ∩ { } ×P J 0, 1 n p
3

2
, namely ( )P JI

3 , in the following result.

Proposition 2.

1. ( ( )) =dim P J n p3
2 .

2. Constraints (42) and (46) induce facets of ( )P JI
3 .

Proof. Constraints (42)–(46) define a particular packing polytope
which has been studied by Padberg [15] among others. The results
are consequences of this observation and the fact that variables
appearing in (42) define maximal cliques in the conflict graph
associated to the problem, see Padberg [15]. □

Observe that constraints (44) do not induce facets of ( )P J3 since
they are dominated by constraints (42).

Let us denote by ( ) = …ij s n, 1, ,s 2 the couple client i facility j
where Cij is the sth lowest cost over the cost matrix C. For instance,

( )ij 1 and ( )ij n2
are, respectively, the most and the least preferred

couples in the sorted list of costs of the cost matrix C.

Definition 1. We call a pair ij generic if for some feasible set J such
that ∈j J , it satisfies

1. Let ^̂I J be the couple client Î facility ^ ∈ JJ such that no couple ′ ′i j ,
′ ∈j J satisfying ^̂ ≺ ′ ′≺i j ijI J does exist, i.e. ^̂I J is the couple im-
mediately before ij. Then, ^ ≠ iI .

2. Let ˜˜IJ be the couple client Ĩ facility ˜ ∈ JJ such that no couple ′ ′i j ,
′ ∈j J satisfying ≺ ′ ′≺˜˜ij i j IJ does exist, i.e. ^̂I J is the couple im-
mediately after ij. Then, ˜ ≠ iI .

Intuitively, a pair ij is generic with respect to a feasible solution
set J if the remaining feasible allocation costs are well distributed
around it. That is, there are costs of different clients surrounding
the ij cost (Cij) in the sorted list of costs.

Proposition 3. If ij is generic for the feasible set J then

∑ ∑ ∑ ∑+ + + ≤ = …
( )′ ′ ≽

′ ′
−

′ ′ ⪯
′ ′

= +
( )

=

−

( )
x x x x k n1 2, ,

47i j ij
i j
k

i j ij
i j
k

l k

n

ij
l

l

k

ij

l1

1 1

2

n1 2

is facet defining for the assignment polytope ( )P JI
3 .

Proof. According to Definition 1, let us denote by ^̂I J and ˜˜IJ the



Table 3
Types of λ − vectors used in experiments.

Notation λ-vector Name

T1 ( … )1, 1, , 1, 1 p-median
T2 ( … )0, 0, , 0, 1 p-center
T3

  
( … … )0, 0, , 0, 0, 1, 1, , 1, 1

k

k-centrum

T4
     

( … … … )0, 0, , 0, 0 , 1, 1, , 1, 1, 0, 0, , 0, 0

k k1 2

( + )−k k trimmed1 2 mean

T5 ( …)0, 1, 0, 1, 0, 1, 0, 1, –

T6 (… ), 0, 0, 1, 0, 0, 1 –

T7 λ random Random
T8 α α α α( … ), , , , , 1 Centdian

Fig. 5. Constraints (47)'s scheme.

M. Labbé et al. / Computers & Operations Research 78 (2017) 230–242 239
couples immediately before and after the couple ij in the sorted
list of costs (see Fig. 5).

In the following we prove that this family of constraints is facet
defining inequalities showing that they are maximal cliques.
Specifically, we show that no additional variable can be added to
those inequalities which is, at the same time, incompatible with all
of those that already appear in it.

Next we prove the above claim. We show that for each variable
that does not belong to the considered clique, there is one in the
clique compatible with it.

1. For all ′ ′≺i j ij, ≤ −l k 1 if ′ ≠i i , variables ′ ′xi j
l and xij

k are com-
patible. Otherwise, variables ′ ′xi j

l and ^^x k
I J

are compatible (Case
1 in Fig. 5).

2. For all ′ ′⪰i j ij, < −l k 1 and ′ ′ ≠ ( )i j ij n2
if ′ ≠i i variables ′ ′xi j

l and xij
k

are compatible. Otherwise, variables ′ ′xi j
l and ^^x k

I J
are compatible

(Case 2 in Fig. 5).
3. For all ′ ′⪯i j ij, = + …l k n1, , and ′ ′ ≠ ( )i j ij 1 if ′ ≠i i, variables ′ ′xi j

l

and −xij
k 1 are compatible. Otherwise, variables ′ ′xi j

l and ˜˜
−x k

I J
1 are

compatible (Case 3 in Fig. 5).
4. For all ′ ′≻i j ij, = …l k n, , if ′ ≠i i variables ′ ′xi j

l and −xij
k 1 are

compatible. Otherwise, variables ′ ′xi j
l and ˜˜

−x k
I J

1 are compatible
(Case 4 in Fig. 5). □

Remark that in our computational experiments, we did not
reinforce constraints (45) because our preprocessing procedure
(see Section 4) sets to zero all the variables appearing in these

reinforcements associated with the costs of couples ( )ij 1 and ( )ij n2
.

Thus, in most cases in our formulation DOMP3, after preprocessing
those constraints are already facet inducing.
4. Computational study

In order to test the performance of our new formulations for
DOMP, we have performed intensive computational tests com-
paring results with respect to previous available formulations of
DOMP (see Boland et al. [3], Domínguez-Marín [6], Nickel [13],
Nickel and Puerto [14]) and Marín et al. [11]).

4.1. Description of the test instances

We use two different types of instances. First, we consider
random instances in which the elements of the cost matrix are
integer numbers randomly generated between 10,000 and
100,000. The second set of instances consists in p-median in-
stances from OR_Lib, Beasley [2].

Regarding the random instances; we vary the number of clients
n in { }10, 20, 30, 40, 50 and for each n, we consider three possible
values for the number of facilities to be open: ⎢⎣ ⎥⎦ ⎢⎣ ⎥⎦ ⎢⎣ ⎥⎦=p , ,n n n

4 3 2
.

As for the p-median instances from Beasley's library, we have
selected graphs corresponding to − … −p med p med1, , 20 with up
to 400 nodes from the original data. Each set of nodes is divided in
two disjoint subsets containing, respectively, the set of clients and
the set of facilities. (The reader may observe that in these instances
we force these two sets to be disjoint). Next, each cost Cij is
computed as the shortest path between client i and facility j in the
resulting complete graph induced by the above described set of
nodes.

Eight different types of λ-vectors are tested. Their description is
provided in Table 3. We consider, among others, p-median, p-
center, p–k-centrum, p-trimmed mean, random and p-α-centdian
problems. In the k-centrum case, ⎢⎣ ⎥⎦=k n

2
. In the ( + )k k1 2 -trimmed

mean, ⎢⎣ ⎥⎦= =k k1 2 n
10

. When λ is taken as a random vector we
generate 5 instances which contain values randomly drawn be-
tween 1 and 100. Finally, we use α = 0.5 in the centdian case.

For each type of data and each possible values of parameters n,
p and vector λ, the results presented consist in average values over
five instances. This results in an overall number of 900 tested
instances.

4.2. Preprocessing

We present in this section two preprocessings that are based
on a similar rationale to those already developed in [10,17]; al-
though adapted to the new formulations on this paper. The first
one is based on feasibility and the second on optimality.

Claim 1 (Feasibility based preprocessing).

1. Let ( ) = |{ ∃ ∈ { … } ≤ }|( )l h i j n satisfying C c: 1, , ij h and
( ) = |{ ∃ ∈ { … } ≥ }|( )u h i j n satisfying C c: 1, , ij h .

Then,
(a) =v 0kh and = = ( ) + … = …u k l h n h G1 1, , , 1 ,kh .; and
(b) =v 0kh and = = … − ( ) = …u k n u h h G0 1, , , 1 ,kh .
2. Let ( ) = |{ ′ ′̂ ≺ ′ ≠ }|^l ij i i ij i i: min J ,J and ( ) = |{ ′ ′̂ ≻ ′ ≠ }|^u ij i i ij i i: max J ,J .

Then,
(a) =x 0ij

k for all = …i j n, 1, , , = ( ) + …k l ij n2, , ; and
(b) =x 0ij

k for all = …i j n, 1, , , = … − ( ) −k n u ij1, , 1.

This claim formalizes the fact that a given cost Cij can appear in
position k of a feasible solution only if there are at least −k 1



Table 5
Average integrality gaps.

Formulation GAP (%)

DOMP1 7.34
DOMP2 7.34
DOMP3 2.29
DOMP4 6.27

∩DOMP4 1 6.06

Table 6
CPU-time and number of nodes of the different formulations for =n 10, 20, 30.

Solution approach Time #nodes

( )DOMP B B&3 463.24(8) 46.20

( )∩DOMP B B&4 1 18.64 1389.51

( − )∩DOMP B C& 34 1 52.25 24.94

( − )DOMP B C& 34 39.39 29.37

Table 4
Number of variables fixed by preprocessing.

n (Random instances) 10 (%) 20 (%) 30 (%) 40 (%) 50 (%) Average (%)

Claim 1.2 6.40 9.7 6.2 4.67 3.93 8.07
Claim 2 0.00 5.00 30.00 9.99 9.99 7.00
Total 29.68 29.61 30.43 32.28 31.97 31.40

n (Beasley instances) 50 100 150 200 Average

Claim 1.1 27.03 3.86 33.42 3.0 30.83
Claim 2 8.91 6.85 5.87 5.6 6.7
Total 27.38 30.33 29.67 27.12 28.62
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allocations costs lower than or equal to and −n k greater than or
equal to Cij. We observe that this preprocessing can remove fea-
sible solutions of the problem although it does not affect its so-
lution since they cannot be optimal.

Claim 2. Let ij be a couple client facility. If |{ ′ > }| > −′j C C n p: ij ij ,
then =x 0ij and =x 0ij

k for k¼1,…,n.

This second claim removes some feasible solutions of the
problems which cannot be optimal because they are dominated for
other feasible solutions with smaller objective value.

Table 4 shows the percentage of variables vkh, ukh, xij and xij
k

fixed by our preprocessing based on Claims 1 and 2. Notice that
the percentage of two or three index variables fixed to zero in
random instances is almost equal because assignment costs in
random instances are almost all different. Furthermore, we ob-
serve that the percentage of fixed variables slightly decreases with
n. Observe that Beasley instances have a larger number of ties in
the distances (allocation costs). For this reason, these instances are
solved using our compact formulations DOMP3C and DOMP4C,
whereas those with random data are solved with the formulations
that do not take advantage of ties, namely DOMP3 and DOMP4.
Hence, Beasley instances are preprocessed with Claim 1.1 (for v

variables) and Random instances with Claim 1.2 (for xijk variables).

4.3. Computational results

All our experiments have been carried out on a PC with two
Intel Xeon processors with 3.46 GHz and 48 GB of RAM. The
models were written in Mosel and solved using Xpress IVE 7.3. To
have a clean comparison of our solution approaches, all automatic
cuts from Xpress have been disabled. We now report a summary of
our computational experiments. Detailed information can be
found in the material included in Appendix A of this paper. In
particular, we report results for the different types of lambda
vectors from Table 3.

4.3.1. Random allocation costs data sets
Table 5 provides a comparison of the LP-relaxations of models

DOMP1, DOMP2, DOMP3, DOMP4 and ∩DOMP4 1, averaging for n¼20
and n¼40 and all possible values of p and λ. The last model

∩DOMP4 1 consists in DOMP4 to which constraints (7) of DOMP1 have
been appended. Specifically, we report the integrality gap defined

as =
−⁎

⁎GAP
z z

z
l
LP
, where zn and zlLP represent the optimal value of

DOMPl and its LP-relaxation, respectively. We observe that the
values of the integrality gap vary between 2.29% and 7.34%, ob-
tained in formulations DOMP3 the best and DOMP2 or DOMP1 the
worst. In all cases, the LP-gaps are good but specially in formula-
tion DOMP3 which seems to be rather tight. We remark also the
small difference that is obtained adding constraints (7) to the
formulation DOMP4 in terms of integrality gap. Moreover, we point
out that we have obtained the same LP-gap with formulations
DOMP1 and DOMP2 for all the tested instances. (It is still an open
question whether this is also theoretically true.) Thus, from Table 5
one could conclude that the best formulation is DOMP3. In spite of
that, the large number of inequalities ( ( )O n3 ) used in the model
makes it rather slow whenever the number of clients n is of
moderate size ( > )n 50 .

In order to define a solution approach which presents the best
performance, we have conducted a preliminary computational test
with instance sizes =n 10, 20, 30. Our first strategy consists in
solving DOMP3 with a pure branch-and-bound. Our second strat-
egy, ( )∩DOMP B B&4 1 , solves ∩DOMP4 1 with a pure branch-and-bound.
The third approach, ( − )∩DOMP B C& 34 1 , starts by solving the LP-
relaxation of DOMP4 and then adds inequalities (7) at the root
node and order constraints (21) as long as they are violated by the
current solution of the LP. The reader may observe that both fa-
milies of inequalities are cliques in the conflict graph induced by
the three index variables of our formulation. Therefore, order
constraints could in principle be added by standard clique cuts
generation techniques implemented in Xpress. Nevertheless, our
own implementation is more efficient since the separation of the
entire family of valid inequalities (21) can be performed in ( )O n3 by
sequentially updating the l.h.s. value of the order constraints when
switching from a couple ij to the adjacent one in the same position
k. The fourth and last strategy ( − )DOMP B C& 34 is a branch and cut
algorithm based upon DOMP4 adding only valid inequalities from
(21).

Our results are reported in Table 6. There we have included the
CPU-times, in seconds, and the number of nodes in the B&B tree
for solving instances to optimality within 2 h of CPU-time. The
numbers between parentheses indicate the number of unsolved
instances within the time limit. We observe that on average

( )∩DOMP B B&4 1 is the strategy that solves problems faster even
though it has to visit the largest number of nodes in the B&B tree.
This is explained by the fact that it is the most compact formula-
tion (with the smallest number of inequalities) and therefore, it
can be easily solved at each node. On the other hand, ( )DOMP B B&3
is the heaviest one (in terms of LP representation) giving rise to
worse CPU-times although it visits few nodes in the searching
phase. In between, we found the two branch-and-cut procedures
that we have tested ( − )∩DOMP B C& 34 1 and ( − )DOMP B C& 34 . In the
implementation of this two B C& approaches we have tested the
separation of maximal clique inequalities over the conflict graph
as an alternative to our own separation procedure. Nevertheless,
our separation algorithm applied on inequalities (7) and (21) gives
better results. From the above two tables, we can conclude that the
best strategies to be tested in the intensive computational tests are



Table 8
CPU-Time of the different formulations for different values of p.

p ( )DOMP B B&2 ( )∩DOMP B B&4 1

⎢
⎣⎢

⎥
⎦⎥

n
4

500.91(2) 787.49(6)

⎢
⎣⎢

⎥
⎦⎥

n
3

259.46 201.20

⎢
⎣⎢

⎥
⎦⎥

n
2

185.03(2) 44.01

Table 9
Summary of results using Beasley's data set.

Problem n p Time (#unsolved)

( )DOMP B B&2 ( − )DOMP B C 3C&4C

pmed1 50 5 94.65 94.66
pmed2 50 10 79.24 40.58
pmed3 50 10 103.84 37.58
pmed4 50 20 34.94 8.57
pmed5 50 33 20.44 3.90
pmed6 100 5 805.02 4757.27(5)
pmed7 100 10 617.60 2708.85(2)
pmed8 100 20 848.95(1) 543.26
pmed9 100 40 130.28 45.87
pmed10 100 67 45.84 22.01
pmed11 150 5 1353.85(1) 3702.40(2)
pmed12 150 10 1667.06(1) 4235.25(4)
pmed13 150 30 2030.82(1) 3808.45(3)
pmed14 150 60 509.60 302.93
pmed15 150 100 88.48 52.17
pmed16 200 5 2760.99(1) 5940.66(6)
pmed17 200 10 2940.22(1) 5670.05(6)
pmed18 200 40 1830.27(1) 4129.70(3)
pmed19 200 80 358.11 264.35
pmed20 200 133 256.21 150.76

Table 7
Summary of results with random matrices.

n p Time (# unsolved)

( )DOMP B B&2 ( )∩DOMP B B&4 1

10 2 1.12 0.42
10 3 0.54 0.25
10 5 0.18 0.09
20 5 22.21 5.80
20 6 9.05 4.09
20 10 3.33 1.54
30 7 161.32 121.04
30 10 66.85 22.70
30 15 33.15 11.87
40 10 449.11 625.68
40 13 232.79 174.62
40 20 116.99 49.13
50 12 1870.80(2) 3184.54(6)
50 16 988.08 804.36
50 25 771.51(2) 157.44

Average 315.14 344.24
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( )∩DOMP B B&4 1 and, at times, ( − )DOMP B C& 34 .
To finish, Table 7 allows us to compare our best strategy, i.e.

( )∩DOMP B B&4 1 , with a branch-and-bound approach based on
DOMP2, as well as to determine the size of instances that can be
solved within a reasonable time limit of 2 h. This table is organized
in four columns. The first two columns show the size n and p of the
instances. The last two columns show the average CPU-time in
seconds necessary for solving those instances applying formula-
tion ( )DOMP B B&2 and ( )∩DOMP B B&4 1 . The numbers between par-
entheses indicate the number of unsolved instances within the
time limit of 2 h.

From Table 7 we remark that ( )∩DOMP B B&4 1 performs similarly
as ( )DOMP B B&2 (it improves the behavior of ( )DOMP B B&2 only for
some instance sizes). It is better for data instances with <n 40 in
all combinations of p. In addition, for larger n, i.e. =n 40, 50, it is
also better except if p is relatively small as compared with n.
Furthermore, we also observe that for n¼50 both models fail to
solve some instances for the smallest tested value of p¼12. Finally,
Table 8 allows us to conclude that three index with aggregated
scheduling constraints performs the best whenever the number of
facilities to be located is not too small compared to the number of
possible locations.

4.3.2. Beasley's data set
The large number of ties within the cost matrices of this data

set suggests that on this second part of the study DOMP4C is the
appropriate formulation to solve the problems. For each cost ma-
trix we solve each instance with ( )DOMP B B&2 and

( − )DOMP B C C& 3C4 , i.e. formulation DOMP4C within a branch and
cut scheme separating inequalities (29). For each value of n we
solve those problems for the number of open facilities p, suggested
in the original data from Beasley's library, and for all the con-
sidered vectors of λ shown in Table 3.
Table 9 shows the average results for these instances. Detailed
information for each λ can be found in the Appendix. This table is
organized in five columns. The first three columns show the name
of the instance problem and its size n and p. The last two columns
show the CPU-time for solving those instances applying strategies

( )DOMP B B&2 and ( − )DOMP B C C& 3C4 . The numbers between par-
entheses indicate the number of instances that could not be solved
to optimality within the time limit of 2 h. We can see that in 11 out
of 20 instances ( − )DOMP B C C& 3C4 is faster than ( )DOMP B B&2 . This
behavior confirms that both formulations have a rather similar
performance. In spite of that, we observe that the use of our new
formulation outperforms DOMP2 provided that n is of moderate
size <n 50 or whenever the size of p relative to n is not too small,
namely ≥p n/ 0.2. This behavior allows us to conclude that

( − )DOMP B C C& 3C4 is advisable to be used, at least, in those cases.
5. Concluding remarks

This paper presents new formulations for the Discrete Ordered
Median Problem based on order constraints (21) that are valid for
the general non free self-service case. Furthermore, we prove
theoretical relationships, in terms of their LP-gap, for different
formulations of DOMP. According to the theoretical and compu-
tational results obtained in this paper, the main quality of the new
formulations is that they provide substantial improvement of the
integrality gap with respect to previously known ones.

We have observed that the LP-gap of DOMP1 and DOMP2 is
always equal. It is currently an open question whether this prop-
erty holds in general. This question will be a subject of our future
research.

This paper has also opened another interesting line of research
that consists in finding extensions of some of the existing for-
mulations to exploit special structures of the lambda coefficients,
as for instance the one in Marín et al. [11]. Extensions based on the
results in [11] seem to require additional variables to handle the
non free self-service case. A similar rationale can be also applied to
the new formulations in this paper. Further theoretical and com-
putational comparisons of the above mentioned new approach
will be the subject of a follow up paper.
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